ARMG64 4+ FPGA and more:
Linux on the Xilinx ZynqMP

Opportunities and challenges from a powerful and complex chip

Luca Ceresoli, AIM Sportline
luca@lucaceresoli.net
http://lucaceresoli.net

FOSDEM 2018

mailto:luca@lucaceresoli.net
http://lucaceresoli.net

= Embedded Linux engineer
at AIM Sportline
http://wuw.aim-sportline.com/
= Develop real products on custom

hardware
= Kernel, bootloader, drivers
= Integration, build system

= Open source enthusiast
= Contributor to Buildroot and a

few other projects

http://www.aim-sportline.com/

= Introduction

= Development tools

= Linux on your FPGA design
= Booting

= GPU

= Video Codec Unit

= Conclusion

Introduction

SoC+FPGA: what is it?

= A SoC and an FPGA on a single chip

Connected on-chip

Other technologies:

= 2 chips: a SoC and an FPGA, connected via pins
= An FPGA with a synthesized “soft core” CPU

= A good introduction to SoOC+FPGA:
Introduction to SoC4+FPGA, Marek Vasut, ELC-E 2017
https://elinux.org/images/e/ed/Elce-2017-socfpga.pdf
https://youtu.be/R3gIJhnGjjWy

https://elinux.org/images/e/ed/Elce-2017-socfpga.pdf
https://youtu.be/R3gJhnGjjWY

Current Linux-capable SoC+FPGAs

= Xilinx

= 1st generation: Zynq 7000

= 2nd generation: Zynq UltraScale+ MPSoC (aka ZyngMP)
= Intel (Altera)

= 1st generation: Cyclone V and Arria V
= 2nd generation: Stratix 10

ZyngMP block diagram (simplified)

Master

Cortex Cortex
R5 (x2) A53 (x4) s
(%)
o Power Power
f_:_ Interconnect Interconnects
o
o
i
FPGA o S
Csu ® <
VIEL Very Fast =
Peripherals =
PMU

| ' DDR Controller |

Development tools

Documentation

= A lot of documentation by Xilinx

= Start from the Xilinx ZyngMP Documentation hub
https://www.xilinx.com/support/documentation-navigation/design-hubs/

dh0070-zynq-mpsoc-design-overview-hub.html

https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0070-zynq-mpsoc-design-overview-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0070-zynq-mpsoc-design-overview-hub.html

FPGA development

FPGA Development Tools — Xilinx

Xilinx Vivado Design Suite

= Vivado: design FPGA to bitstream
= XSDK: eclipse IDE for firmware development
= Runs on Linux

= Has a zero-cost version (has most features, not the advanced
ones)

= Closed source, huge, has some bugs and issues

FPGA Development Tools — Open source

= No open source FPGA toolchain available

= Bitstream reverse engineering in progress
(https://symbiflow.github.io/)

= On why FPGA open source toolchains matter:
https://blog.elphel.com/2013/10/fpga-is-for-freedom/

https://symbiflow.github.io/
https://blog.elphel.com/2013/10/fpga-is-for-freedom/

BSP components

= Xilinx is active in mainlining
= Discussion: U-Boot@lists.denx.de
= Mainline U-Boot enough to boot

= Newer boards are available at
https://github.com/xilinx/u-boot-x1lnx

= Note: ZyngMP cannot boot U-Boot the “normal” way, see
Booting section later

https://github.com/xilinx/u-boot-xlnx

Linux kernel

= Xilinx is active in mainlining
= Discussion: linux-arm-kernel@lists.infradead.org
= Mainline Linux: partially implemented

= Development in progress at

https://github.com/xilinx/linux-x1lnx
(especially the master branch)

= “Hard” silicon features
= Recent UltraScale+ IPs from Xilinx, mostly video-related

10

https://github.com/xilinx/linux-xlnx

Build system

Available workflows

Typical ways to build the software stack for Xilinx products:
= The “Xilinx workflow”
= Officially supported by Xilinx

= The “Community workflow”

= Similar to other open source projects
= Supported by the community (with Xilinx contributions)

= Other/mixed workflows

11

The Xilinx workflow

= FPGA: Vivado

= Baremetal and bootloaders: XSDK
= Petalinux
= A Xilinx-specific embedded build system
= Nowadays internally uses Yocto
= Yocto layers on https://github.com/xilinx
= A meta-xilinx-bsp fork
= meta-xilinx-tools to use Xilinx tools during the build
= meta-petalinux: a distro layer

= Note: these layers will soon be moved to subdirs of

meta-xilinx

12

https://github.com/xilinx

The Community workflow

= FPGA: Vivado
= A little bit of XSDK

= Yocto meta-xilinx-bsp layer
https://git.yoctoproject.org/cgit/cgit.cgi/meta-xilinx/
subdir meta-xilinx-bsp
= Until a few weeks ago: in the top dir, and called meta-xilinx

= Goal: follow the common practices in FOSS/Yocto

= Not all features supported

13

https://git.yoctoproject.org/cgit/cgit.cgi/meta-xilinx/

Other resources

= meta-xilinx mailing list
= https://lists.yoctoproject.org/listinfo/meta-xilinx
= Discussion on the Yocto layers
= Also for general discussion about Linux on Xilinx hardware
= https://github.com/topic-embedded-products/meta-topic

= Support for boards by Topic Embedded
= But has very useful code (see Booting section later)

14

https://lists.yoctoproject.org/listinfo/meta-xilinx
https://github.com/topic-embedded-products/meta-topic

= Work in progress

= Patches to add basic support under discussion on the
Buildroot mailing-list

ii5

Linux on your FPGA design

Build your own SoC!

= FPGA < CPU interface is AXI4
= AXI = Advanced eXtensible Interface (part of AMBA)

= Peripherals in FPGA are accessible on the physical address
space
= Like hard peripherals and traditional SoCs

16

Typical workflow

= Workflow with Vivado

1. IP integration
2. Address editor
3. Constraints

17

Step 1: IP integration

Vivado: block design

BLOCKDESIGN - dsion 1 2 x
o [Pawram <Aoo eaor T
fla axm oaq s+ i Cly o o
5| scancat 0
g el 2ynq_ultra_ps e 0
H L wooa ¥, vre. b \ ps8.0_axi_periph
001 u =
5 " A o0 £7D 4+ 7
H = f— o0 P
nsto0 s00.a0x Moo av1 sax)
o | rconston rem UltraSCALE* 20 snesenn e &g
14 N pene Zyna Ulrascaies MPSoC o AT
HEETT w00l - Y o aree
S e s ps8 0 991 X reyweh ——
5 s A iterconnect
H b stnet eset00)
i pheral reset 0]
H ntercomect aresetnto0]
perpheral seser(00]
° Pracesaor SySter ReT

18

Vivado: customize the PS block

PS Ultrascale Block Design

3
5
)
H
H
%
K
%
H
3
H
3

PSPL Configuration

i
‘}
8
>
]
c
L
T

I

Dizpiay Port

1
¥

Sau |
R

S
acE

F
DR Controfier
LPD_PMA (DDR3, DDR4, LPDDR3, LPDDR4)

19

Vivado: customize an IP block

@ Re-customize IP

AXI GPIO (2.0)

[

@ Documentation - IP Location

Show disabled ports Component Name |axi_gpio_0

Board | IP Configuration

GPIO

GPIO + " GPIO Width 3

[-32
ip2intc_irpt

Default Output Value |0x00000000

[0X00000000, 0XFFFFFFFF]

Default Tri State Value |OxFFFFFFFF [0X00000000, 0XFFFFFFFF]

Enable Dual channel
GPIO 2

/| Enable Interrupt

20

Linux: instantiate a device

axi_gpio_0

— Linux drivers for Xilinx IPs:
i GPIO + |||
Aol ip2inte irpt wiki.xilinx.com/Linux+Drivers

5_axi_aresetn

AXI GPIO

gpio: gpio@a0000000 {
#gpio-cells = <2>;
compatible = "xlnx,xps-gpio-1.00.a";

gpio-controller;

<3>;
<1>;

B

x1lnx,gpio-width

xlnx,all-inputs

/*...x/

21

http://www.wiki.xilinx.com/Linux+Drivers

Vivado: interrupts

xlconcat_0
zyng_ultra_ps_e_0

In0[0:0]
IN1[0:0]

::;{ggi maxihpm0_fpd_aclk E YNQ
mago:o) 47! Pl |

x!cnnstant_o kTl L UltraSCALE_

) e Z UltraScal MPSa
dout[0:0] }: In7[0:0] yng UltraScale+ a
“Constant Concat rst_ps8_0_99M

22

Linux: interrupts

#include <dt-bindings/interrupt-controller/arm-gic.h>

#include "zyngqmp-irgs.dtsh" // (*)

gpio: gpio©@a0000000 {
#gpio-cells = <2>;
compatible = "xlnx,xps-gpio-1.00.a";
gpio-controller;
interrupt-parent = <&gic>;
interrupts = <GIC_SPI PL_PS_GRPO_IRQ_O

IRQ_TYPE_LEVEL_HIGH>;

/%, .. %/

+;

(*) From github.com/xilinx/qemu-devicetrees/blob/master/

23

https://github.com/xilinx/qemu-devicetrees/blob/master/zynqmp-irqs.dtsh

Step 2: Address editor

Vivado: Address editor

BLOCK DESIGN - design_1 *

« | Diagram x Address Editor x
& ——
3|l = %
]
Cell Slave Interface Base Name Offset Address Range
c || ¥ zyng_ultra_ps_e 0
g v B Data (40 address bits:) [256M | 0[4G]
o
a = axi_gpio_0 S_AXI Reg 0x00_AS00_BEE0 4K -
o)
T
=
-

24

Linux: address map

gpio: gpio@a0000000 {
#gpio-cells = <2>;
compatible = "xlnx,xps-gpio-1.00.a";
gpio-controller;
reg = <0x0 0xa0000000 0x0O 0x10000>;
[%.. %/

25

Step 3: Constraints

Vivado: constraints

= Connect nets to pins: placement, 10 standard, pull-up/down..
= No visible effect in Linux

SYNTHESIZED DESIGN * - synth 1 | xczudeg-fib1156-2-2 (active)

Device Constraints x 2 _ 0 [
Q = & = o
v Internal VREF
0.6v ~
0.675v

Drop 110 banks on voltages or the *NONE® folder to set/unset
Internal VREF.

10 Port Interface Prope x Clock Regions | 2 _ [0 4
& GPI0_0_54576 - o
Name: GPI0_0_ 54576

General

Td Console | Messages |Log | Reports | DesignRuns | Package Pins | O Ports 2_0oo
Q x s [€+ ™

Name Direction Board PartPin Boar.. Neg.. PackagePin Fied Bank 1/0Std Vcco Vref Drves.. SlewType PullType

v & Allports (3

v [3GPI0_0.54576 (3) N

(Multiple) ~ 1800 PULLUP

v BGRIOOLII(A) N (Multiple) ~ 1800 PULLUP v
D GPIO_Otrii[2] N default (LVCMOS18) ~ 1.800 PULLUP v
D GPIO_Otrii[l] IN v default (LVCMOS18) ~ 1.800 PULLUP v
@ GPIO_0_trii[0] IN Flg v v 48 LVCMOS18 - 1800 PULLUP v
Scalar ports

26

Booting

Simple ARM32 booting

= Good old simple booting on ARM32:

1. Boot ROM loads SPL into internal RAM
2. SPL initializes SDRAM, loads U-Boot
3. U-Boot loads kernel

= But waking up in an ARM64 world is much more complex...

27

The Platform Management Unit (PMU

L] DUtieS: Cortex Cortex Master
R5 (x2) A53 (x4) Slie

= Power gates peripherals,]]

Low Full

Power] Power
Interconnect Interconnects

i1 N

1] . g FPGA
= Can't boot without it

= Similar to other ARM64 boards

= E.g. the ARM Juno board l DDR Controller]

power islands, power domains

Peripherals

= Clock gates peripherals

Peripherals

28

https://developer.arm.com/products/system-design/development-boards/juno-development-board

PMU firmware

= PMU is a Microblaze core with 128 kB RAM
= Executes a firmware that can be reprogrammed

= But the one in ROM is not enough, so it must be
reprogrammed

= Source at https://github.com/xilinx/embeddedsw

= meta-xilinx-bsp master can build it (not the Xilinx
branches)

= The PMUFW needs a configuration object

= Tells which master (CPU) owns which slave (peripheral)
= Depends on how the hardware is configured in Vivado

29

https://github.com/xilinx/embeddedsw

ARM Trusted Firmware

A secure monitor reference implementation

Cortex R5 Cortex A53

Bare-metal Linux /
application U-Boot

X,

pm ATF

PM API
PM API

PMU

30

Booting — The Xilinx workflow

Boot sequence

PMU —

CSsu

A53

Release

CSuU

AN

Power

management

//

Load
FSBL

Load
PMUFW

Tamper

monitoring

N\

/

FSBL: load
cfg_obj, ATF, U-Boot

ATF

— U

-Boot

~—

31

Building the pieces

—> PMUFW BSP H
— PMUFW H

|, gsp PMCOOBI| | Fecpiarf
> FSBL H SD card "

-} pmufw.elf BOOT.BIN

Pros and cons

Pros

= The Xilinx tools make it easy

= FSBL is easy to understand and debug

Cons

FSBL is slow (~3 seconds to load a 4 MB FPGA bitstream)

The Xilinx tools: big and heavy, hard to automate
= Proprietary bootgen tools needed to generate BOOT.BIN

Non-standard (w.r.t. other SoCs)

33

Booting — The Community workflow

FSBL — U-Boot SPL

Can U-Boot SPL replace Xilinx FSBL?

34

FSBL — U-Boot SPL

Can U-Boot SPL replace Xilinx FSBL?

= SPL cannot load FPGA
= but U-Boot can (~10x faster)

34

FSBL — U-Boot SPL

Can U-Boot SPL replace Xilinx FSBL?

= SPL cannot load FPGA
= but U-Boot can (~10x faster)

= SPL loads U-Boot proper, not ATF!
= but there's a trick for that

34

FSBL — U-Boot SPL

Can U-Boot SPL replace Xilinx FSBL?
= SPL cannot load FPGA
= but U-Boot can (~10x faster)

= SPL loads U-Boot proper, not ATF!
= but there's a trick for that

= SPL cannot load PMUFW configuration object

= but there's a workaround for that

34

SPL: loading ATF

= U-Boot SPL must load U-Boot proper
= But ATF must be there before U-Boot proper
= The trick for SPL to load both is:

35

SPL: loading ATF

= U-Boot SPL must load U-Boot proper
= But ATF must be there before U-Boot proper
= The trick for SPL to load both is:

configs/xilinx_zyngmp_*_defconfig

CONFIG_SPL_0S_BO0T=y // aka Falcon Mode

35

SPL: loading ATF

= U-Boot SPL must load U-Boot proper
= But ATF must be there before U-Boot proper
= The trick for SPL to load both is:

configs/xilinx_zyngmp_*_defconfig

CONFIG_SPL_0S_BO0T=y // aka Falcon Mode

include/configs/xilinx_zynqmp.h

/* u-boot is like dtb */
#define CONFIG_SPL_FS_LOAD_ARGS NAME "u-boot.bin"
#define CONFIG_SYS_SPL_ARGS_ADDR 0x8000000

/* ATF is my kernel image */
#define CONFIG_SPL_FS_LOAD_KERNEL_NAME "atf-uboot.ub"

35

Loading PMUFW configuration object

SPL cannot load PMUFW configuration object
The current best workaround is:
= Link pm_cfg_obj.c in the PMUFW
= Load it during PMUFW startup
= Original patches on the meta-topic layer
= A trivial script to apply the patches and build PMUFW:
https://github.com/lucaceresoli/zyngmp-pmufw-builder

= Pros: it works!
= Cons: must rebuild PMUFW when configuration changes
= But in the Xilinx workflow you'd have to rebuild FSBL anyway

36

https://github.com/topic-embedded-products/meta-topic/tree/0b923bdab78c0a9f6c763dab60ead63bd716bea4/recipes-bsp/pmu-firmware
https://github.com/lucaceresoli/zynqmp-pmufw-builder

Boot sequence

PMU —

CSsu

A53

Release Power
CSuU Gre O management
Load - Load Tamper
SPL PMUFW monitoring
SPL: load
ATF, U-Boot ATF — U-Boot

~—

37

Peripheral initialization

= Pinctrl and most peripherals must be configured by the
bootloader
= To do this in U-Boot:
1. In Vivado: File — Export — Export hardware...
= Generates a .HDF file, actually a ZIP file
2. Extract the HDF file, get
psu_init_gpl.c and psu_init_gpl.h
3. Put them in the U-Boot sources
= in board/xilinx/zynqmp/
= and make sure it's not using the bundled ones (see the source
code)

38

https://github.com/xilinx/u-boot-xlnx/tree/a703fb6e3c6c5a7f57321e258a58d241e2afdc45/board/xilinx/zynqmp
https://github.com/xilinx/u-boot-xlnx/tree/a703fb6e3c6c5a7f57321e258a58d241e2afdc45/board/xilinx/zynqmp

Building the pieces

Yocto
ATF
e fpga.bit g fpga.bin

- psu_init* -
= —» 8 [u-boot.bin
o
[ai]
S | spL F—{boot.bin |

L
| PMU FW
I—)

FSBL ;
m_cfg_ob I::I
BSP SD card

39

GPU

The GPU

= ARM Mali-400 MP2

» Official software support from ARM /Xilinx:
= Requires a binary blob
= Lacks some features

= Open source alternatives:

= limadriver.org: reverse engineering, abandoned
= github.com/yug/mesa-lima: new Mesa driver in progress

40

https://limadriver.org/
https://github.com/yuq/mesa-lima

Official software support

= A kernel module

= GPLv2

= Not in mainline (perhaps never)
= A userspace library

= Where the interesting stuff is done
= Implements OpenGL ES APIs

= Proprietary, binary only

= SoC-specific

41

MALI kernel module

= Yocto recipe on meta-xilinx-bsp

= Sources from ARM
+ 10 patches

= ZyngMP customizations

= Updates for recent kernels

= Works fine

42

libmali-xInx: find it

= Yocto recipe in the Xilinx fork (GitHub)

= Not in the “official” meta-xilinx-bsp
(master on yoctoproject.org)

= To stay on the master path:

= Copy the whole recipe from Xilinx's rel-v2017.4 in your layer

43

libmali-xInx: fetch the sources

= The recipe fetches from gitenterprise.xilinx.com

— No address associated with hostname
= An internal Xilinx repo?

= docs/MALI-binaries has the procedure:

Register on xilinx.com

Download a tarball, extract it

Read the docs there, extract a 2nd tarball

Extract a 3rd tarball (oh, looks like a bare git repo)
Set SOURCE_MIRROR_URL to that path

ok =

= Small improvement: extract the 3rd tarball in DL_DIR, skip
step 5

44

https://github.com/xilinx/meta-xilinx/blob/rel-v2017.4/docs/MALI-binaries

libmali-xInx: use it

= Two versions to choose from:
= fbdev fullscreen

= Enough for many embedded products
= No multi-screen support

= X11

= Multi-screen does not seem to work

45

Video Codec Unit

The VCU

Cortex
A53 (x4)
= VCU = Video Codec Unit Full
= H.264 and H.265 encoder and decoder in Power
Interconnects
hardware
= Floating in FPGA, not connected to the ‘H
hard interonnects FPGA
VCU

46

Hardware /Software stack

gstreamer

OpenMAX

libomxil-xInx

libvcu

Driver

|:| 3rd party, open

I:l Xilinx, source
- Xilinx, binary
[] Hw

47

Instantiate the VCU

1. Instantiate in Vivado (pretend it's an IP block)

2. Devicetree in Linux (in the 1inux-x1nx kernel)

48

= All recipes on meta-petalinux
= Not usable in the Community workflow or with recent Yocto:

= forces gstreamer 1.8 (Yocto 2.4 has 1.12)
= points to patches it does not ship

= some not in poky anymore
= some don't apply on gstreamer 1.8

= But easy to use manually, see next slide

49

Shopping list

1. Take Xilinx specific recipes as-is

= kernel-module-vcu_git.bb
= vcu-firmware_git.bb

= libvcu-xlnx_git.bb

= libomxil-xlnx_git.bb

2. Take gstreamer-omx tweaks from Xilinx as-is

= gstreamerl.O-omx_%.bbappend
= Switches to Xilinx fork
= Adds build flags

3. install gstreamerl.0-omx

50

gst-launch-1.0 -ve v41l2src device=/dev/video0 \
! 'video/x-raw,format=NVi2,
width=1920,height=1080,framerate=(fraction)60/1' \

! omxh265enc \
! filesink location=video.h265

51

Conclusion

Conclusion

= Very powerful, flexible hardware
= But very complex

= Software support is complex (partly avoidable)
= Xilinx works to support users

= Slowly moving towards standard tools

= Mainlining effort

52

Thank you for your attention

Questions?

Luca Ceresoli
luca@lucaceresoli.net
http://lucaceresoli.net
© Copyright 2018, Luca Ceresoli. Slides released under

Creative Commons Attribution - Share Alike 3.0 License
https://creativecommons.org/licenses/by-sa/3.0/

53

mailto:luca@lucaceresoli.net
http://lucaceresoli.net
https://creativecommons.org/licenses/by-sa/3.0/

	Introduction
	Development tools
	Linux on your FPGA design
	Booting
	GPU
	Video Codec Unit
	Conclusion

